
Business White Paper 
July 2013

Scaling PHP in 
the Real World: 
A Performance 
Optimization Checklist



2

Scaling PHP in the Real World

White Paper

PHP is slower than Java, C++, Erlang and Go, but that doesn’t mean you have to 
resign yourself to having a slow app. On the contrary – there is plenty you can do 
to make your app scale for the masses. After all, the likes of Facebook, Yahoo, 
Zynga, Tumblr, Etsy and Wikipedia all use PHP. In this checklist you’ll find some 
quick-and-dirty tricks as well as some bigger, ongoing projects to help improve 
the performance of your PHP app, whether you have one server or a thousand.

Going Beyond a Single Server 
If your PHP application runs on a single server and you’re dealing with significant load, then the first 
thing you might want to think about is adding some infrastructure. Assuming that a single server 
is all you need for the purposes of your application, there are a few easy things you can do to get a 
performance boost. If you have a larger application, don’t skip this section – make sure you’ve got all 
the low-hanging fruit before you embark on anything more ambitious.

Upgrade PHP. One of the easiest optimizations you can make to improve performance and 
stability is to upgrade your version of PHP. PHP 5.3.x was released in 2009. If you haven’t migrated 
to PHP 5.5, now is the time! Not only do you benefit from bug fixes and new features, but you will 
also see faster response times immediately.1 Go to PHP.net to get started.

Use an opcode cache. PHP is an interpreted language, which means that every time a PHP page 
is requested, the server will interpret the PHP file and compile it into something the machine can 
understand (opcode). Opcode caches preserve this generated code in a cache so that it will only 
need to be interpreted on the first request. If you aren’t using an opcode cache you’re missing out 
on a very easy performance gain. Pick your flavor: APC, Zend Optimizer, or XCache.

Use autoloading. Many developers writing object-oriented applications create one PHP source 
file per class definition. One of the biggest annoyances in writing PHP is having to write a long list 
of needed includes at the beginning of each script (one for each class). PHP re-evaluates these 
require/include expressions over and over during the evaluation period each time a file containing 
one or more of these expressions is loaded into the runtime. Using an autoloader will enable you 
to remove all of your require/include statements and benefit from a performance improvement. You 
can even cache the class map of your autoloader in APC for a small performance improvement, too.

1 There are a lot of reasons for this – check out the changelog to learn more.

Try: Nginx + PHP-FPM. Nginx is a free open source HTTP server and proxy server known for its high performance and 
low memory footprint. Its scalable, event-driven architecture make it perform better in high-volume environments 
than other servers that use threads to service requests. PHP-FPM is a FastCGI process manager for PHP that’s both 
easy to tune and fast, since it runs independent of the web server process.

Try: APC (Alternative PHP Cache) is a free and open cache written by the creator of PHP, Rasmus Lerdorf. APC works 
well for small and frequently accessed objects on a single server.

Try: Symfony2 ClassLoader Component.

http://www.php.net
http://php.net/manual/en/book.apc.php
https://github.com/zendtech/ZendOptimizerPlus
http://xcache.lighttpd.net
http://php.net/ChangeLog-5.php
http://nginx.org
http://php-fpm.org
http://php.net/manual/en/book.apc.php
http://symfony.com/doc/master/components/class_loader.html


3

Scaling PHP in the Real World

White Paper

Small-to-Medium Sized App
Optimize your sessions. While HTTP is stateless, most real life web applications require a way 
to manage user data. In PHP, application state is managed via sessions. The default configuration 
for PHP is to persist session data to disk. This is extremely slow and not scalable beyond a single 
server. A better solution is to store your session data in a database and front it with an LRU (Least 
Recently Used) cache with Memcached or Redis. If you are super smart you will realize you should 
limit your session data size (4096 bytes) and store all session data in a signed or encrypted cookie. 

Further reading:
http://www.php.net/manual/en/book.session.php
http://php.net/manual/en/function.session-set-save-handler.php
http://php.net/manual/en/memcached.sessions.php
http://www.hardened-php.net/suhosin/configuration.html#suhosin.session.encrypt

Leverage an in-memory data cache. Applications usually require data. Data is usually structured 
and organized in a database. Depending on the data set and how it is accessed it can be expensive 
to query. An easy solution is to cache the result of the first query in a data cache like Memcached 
or Redis. If the data changes, you invalidate the cache and make another SQL query to get the 
updated result set from the database. There are also many use cases for a distributed data cache 
from caching web service responses and app configurations to entire rendered pages.

Big App
Do blocking work in the background. Often times web applications have to run tasks that can 
take a while to complete. In most cases there is no good reason to force the end-user to have 
to wait for the job to finish. The solution is to queue blocking work to run in background jobs. 
Background jobs are jobs that are executed outside the main flow of your program, and usually 
handled by a queue or message system. There are a lot of great solutions that can help solve 
running background jobs. The benefits come in terms of end-user experience and scaling by 
writing and processing long-running jobs from a queue. I am a big fan of Resque for PHP that is 
a simple toolkit for running tasks from queues. There are a variety of tools that provide queuing 
or messaging systems that work well with PHP: Resque, Gearman, RabbitMQ, Beanstalkd, 
ZeroMQ, ActiveMQ

Further reading:
https://github.com/chrisboulton/php-resque
https://github.com/kamisama/php-resque-ex
https://github.com/kamisama/ResqueBoard

Try: Storing sessions in Memcached, a popular in-memory key-value store.

Try: Doctrine Object Relational Mapper (ORM) for PHP, which has built-in caching support for Memcached or Redis. 
Doctrine is a popular choice because it doesn’t require much configuration to set up and offers developers the 
ability to use an object oriented SQL dialect (DQL) inspired by Hibernate’s HQL. 

Try: Resque, a very simple Redis-backed library for creating background jobs created by GitHub.

http://memcached.org
http://redis.io
http://www.php.net/manual/en/book.session.php
http://php.net/manual/en/function.session-set-save-handler.php
http://php.net/manual/en/memcached.sessions.php
http://www.hardened-php.net/suhosin/configuration.html%23suhosin.session.encrypt
https://github.com/resque/resque
http://www.gearman.org
http://www.rabbitmq.com
http://kr.github.io/beanstalkd/
https://github.com/chrisboulton/php-resque
https://github.com/kamisama/php-resque-ex
https://github.com/kamisama/ResqueBoard/
http://memcached.org/
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/caching.html
http://memcached.org
http://redis.io
https://github.com/resque/resque


4

Scaling PHP in the Real World

White Paper

Leverage HTTP caching. HTTP caching is one of the most misunderstood technologies of the 
Internet. Go read the HTTP caching specification. Don’t worry, I’ll wait. Seriously, go do it! 
They solved all of these caching design problems a few decades ago. It boils down to expiration 
or invalidation and when used properly can save your app servers a lot of load. Please read the 
excellent HTTP caching guide from Mark Nottingham. There are several reverse proxy caches 
available including Varnish, Squid, Nginx Proxy Cache and Apache Proxy Cache.

Further reading:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.mnot.net/cache_docs/

Holy Sh!t Scale
Create your own variant of PHP. When you become too big, PHP simply doesn’t scale anymore. 
But, as we mentioned at the beginning, some of the biggest websites in the world run on PHP – 
so how do they do it? Some organizations choose to write their more complex functionalities as 
PHP extensions in C or C++.

•	 Facebook and the HipHopVM: Facebook built an open source virtual machine (VM) 
designed to “achieve superior performance while maintaining the flexibility that PHP 
developers are accustomed to.” With the HipHopVM, Facebook’s developers can still 
write in PHP without sacrificing performance.

Of course, these strategies are really only practical for the tech giants that have the scale to require a 
project like this (and the developer resources to throw at it). Most organizations won’t need or want to 
create their own PHP variant in order to improve performance.

Everyone
Learn to profile PHP code. Caching and other quick performance optimizations are great, but if 
you have real issues in your PHP application, at some point you’re going to have to get down and 
dirty with the code. Setting up a profiler in a dev or test environment is a great way to find out 
where exactly your bottlenecks are.* Here are a few good profilers to get you started: 

*Bear in mind, however, that it’s difficult (if not impossible) to find everything in a pre-production 
environment – no matter how close to production your test environment is, you can never 
anticipate how it will perform in a live production environment. For that, you need production 
monitoring – which is a topic for another time.

•	 Xdebug is a PHP extension for powerful debugging. It support stack and function traces, 
profiling information and memory allocation and script execution analysis. It allows 
developers to easily profile PHP code.

•	 WebGrind is an Xdebug profiling web frontend in PHPS. It implements a subset of the 
features of kcachegrind and installs in seconds and works on all platforms. For quick and dirty 
optimizations it does the job. Here’s a screenshot showing the output from profiling (?)

•	 XHprof is a function-level hierarchical profiler for PHP with a reporting and UI layer. XHProf is 
capable of reporting function-level inclusive and exclusive wall times, memory usage, CPU 
times and number of calls for each function. Additionally, it supports the ability to compare 
two runs (hierarchical DIFF reports) or aggregate results from multiple runs.

Optimize your framework. Deep diving into the specifics of optimizing each framework is outside 
the scope of this post, but these principles apply to every framework: 

•	 Stay up-to-date with the latest stable version of your favorite framework
•	 Disable features you are not using (I18N, Security, etc)
•	 Enable caching features for view and result set caching

Try: Varnish, a free reverse proxy cache designed to be very fast and flexible.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.mnot.net/cache_docs/
http://www.mnot.net/cache_docs/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.mnot.net/cache_docs/
https://github.com/facebook/hiphop-php/wiki
https://github.com/facebook/hiphop-php/wiki
https://www.varnish-cache.org


303 Second Street, Suite 450 North Tower 
San Francisco, CA 94107 
www.appdynamics.comAppDynamics Proprietary & Confidential – All Rights Reserved

Try Us For FREE 
www.appdynamics.com/free

Find out more at 
www.appdynamics.com

About AppDynamics

AppDynamics is the leading provider of Software-as-Service (SaaS) and on-premise application performance management for modern application architectures 
in both the cloud and the data center. The company delivers solutions for highly distributed and agile environments, helping companies such as Priceline, TiVo, 
AMICA Insurance, Hotels.com, StubHub, DSW, Staples, Insight Technologies, Abercrombie & Fitch, and Cornell University monitor, troubleshoot, diagnose, and 
scale their production applications. Over 70,000 people have downloaded AppDynamics Lite at appdynamics.com/free. The company was recognized as an APM 
Innovator by Gartner.

Don’t forget to optimize the client side! Server side application performance is only part of 
the battle. Now that you’ve optimized the server side, you can spend time improving the client 
side! In modern web applications most of the end user experience time is spent waiting on 
the client side to render. Google has dedicated many resources to helping developers improve 
client side performance.

Build for performance. Scalability is about the entire architecture, not some minor code 
optimizations. If you want a fast app, you need to build for speed – and look at what kinds of major 
improvements can be made to make your app perform better.

Conclusion
There’s no easy answer to making your app fast, unfortunately. There are some quick optimizations 
you can implement to get a performance boost, but ultimately performance is an ongoing part of 
building and maintaining an application. Hopefully this checklist helped you get an idea of where you 
sit on the performance spectrum, and what you need to do next in order to scale your app.

About the Author
Dustin Whittle is a Developer Evangelist at AppDynamics focused on helping organizations manage 
their application performance. Before joining AppDynamics, Dustin was CTO at Kwarter, a consultant 
at SensioLabs, and developer evangelist at Yahoo!. He has experience building and leading engineering 
teams and working with developers and partners to scale up. When Dustin isn’t working he enjoys 
flying, sailing, diving, golfing, and travelling around the world. Find out more at dustinwhittle.com.

Try: Google PageSpeed. Google PageSpeed is a great tool for finding quick and easy ways to reduce the load time of 
your web pages. It analyzes the contents of your web pages and then produces some suggestions for how to improve 
their performance. They even have modules for Apache and Nginx to automatically implement some of the rules.

http://www.appdynamics.com/free
http://dustinwhittle.com
http://www.linkedin.com/company/594846%3Ftrk%3Dtyah
http://clicktotweet.com/7U8sa
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts
https://developers.google.com/speed/pagespeed/

