
An AppDynamics Business White Paper

Ten years ago, the standard way to troubleshoot an
application issue was to look at the logs. Users would
complain about a problem, you’d go to operations and
ask for a thread dump, and then you’d spend some
time poring over log files looking for errors, exceptions,
or anything that might indicate a problem. There are
some people who still use this approach today with
some success, either because their applications are
very simple or because their technology is not yet
supported by most monitoring tools, but for most
modern applications logging is simply not enough
anymore. If you’re depending on log files to find and
troubleshoot performance problems, then chances are
your users are suffering – and you’re losing money for
your business. In this white paper we’ll look at how
and when logging is no longer enough for managing
application performance.

WHEN LOGGING ISN’T ENOUGH

A Modern Approach to Monitoring
Performance in Production

When Logging Isn’t Enough
A Modern Approach to Monitoring Performance in Production

2

The Legacy Approach
Ten years ago, logging was the best (and only) way to investigate performance
issues. The typical legacy web application was monolithic and fairly static, with
a single application tier talking to a single database that was updated every six
months. The legacy approach to monitoring production web applications was
essentially a customer support loop. A customer would contact the support team
to report an outage or bug, the customer support team reports the incident to the
operations team, and then the operations team would investigate by looking at
the logs with whatever useful information they had from the customer (username,
timestamps, etc.). If the operations team was lucky and the application has ample
logging, the operations team will spot the error and bring in developers to find the
root cause and provide a resolution. This is the ideal scenario, but more often than
not the logs were of very little use and the operations team would have to wait for
another user to complain about a similar problem and kick off the process again.
Ten years ago, this was what production monitoring looked like. Apart from some
rudimentary server monitoring tools that could alert the operations team if a server
was unavailable, it was the end users who were counted on to report problems.

Limitations of Logging
Trawling log files has never been particularly easy or fast. Even if you have a
monolithic, unchanging application there are still problems with using logs to
manage application performance, especially in production.

Logging is Inherently Reactive
The most important reason that logging was never a great strategy for managing
performance is that logging is an inherently reactive approach to performance.
Typically this means an end user is the one alerting you to a problem, which means
that they were affected by the issue – and (therefore) so was your business. A
reactive approach to application performance loses you money and damages your
reputation.

Weblogic Oracle

When Logging Isn’t Enough
A Modern Approach to Monitoring Performance in Production

3

You’re Finding a Needle In a Haystack
Another reason why logging isn’t suitable for production is that system logs have
a particularly low signal to noise ratio. This means that most of the data you’re
looking at (which can amount to terabytes for some organizations) isn’t helpful.
Sifting through log files can be a very time-consuming process, especially as your
application scales, and every minute you spend looking for a problem is time that
your customers are being affected by a performance issue. Of course, newer tools
like Splunk, Loggly, SumoLogic and others have made sorting through log files
easier, but you’re still looking for a needle in a haystack.

Logging Requires an Application Expert
Even with tools like Loggly and Splunk, you need to know exactly what to search
for before you start, whether it’s a specific string, a time range, or a particular file.
This means the person searching needs to be someone who knows the application
well, usually a developer or an architect. Even then, their hunches could be wrong,
especially if it’s a performance issue that you’ve never encountered before.

Not Everyone Has Access To Logs
Logging is a great tool for developers to debug their code on their laptops, but
things get more complicated in production, especially if the application is dealing
with sensitive data like credit card numbers. There are usually restrictions on
the production system that prevent people like developers from accessing the
production logs. In some organizations, these can be requested from the operations
team, but this step can take a while. In a crisis, every second counts, and these
costly processes (while important) can cost your organization money if your
application is down.

You’re Only Seeing Part of the Picture
Even in a perfect world where you have complete access to your application’s log
files, you still won’t have complete visibility into what’s going on in your application.
The developer who wrote the code is ultimately the one who decides what gets
logged, and the verbosity of those logs is often limited by performance constraints
in production. So even if you do everything right there’s still a chance you’ll never
find what you’re looking for.

Furthermore, your logs can only tell you what’s going on inside your application
servers. What if the bottleneck is in a third party service call? Or the infrastructure?
Logs can’t tell you what’s happening on the edges of your application, or on the
machines themselves. When it comes to preventing downtime you need to monitor
not only your application, but also your infrastructure and third party dependencies.
Is the machine CPU maxed out, or does this error only happen when disk I/O is
maxed out? Does the downtime only happen when a third-party web service is
slow? Logging won’t tell you about anything except what a developer thought
would be useful at the time.

When Logging Isn’t Enough
A Modern Approach to Monitoring Performance in Production

4

The New Normal – When Logging is No Longer Enough
Logging has never been perfect, but it was pretty widespread ten years ago, simply
because there weren’t many alternatives. Today, however, there are application
performance management solutions for the all the most popular programming
languages that make it much easier to troubleshoot performance bottlenecks.
Unless you’re using bleeding-edge technology that isn’t supported by monitoring
tools like these, you have no reason to rely on logging for managing performance.
In fact, there are some very good reasons not to rely on logging anymore.

Your App is Much More Complex
Today, enterprise web applications are much more complex than they were ten
years ago. The new normal for these applications includes multiple application tiers
communicating via a service-oriented architecture (SOA) that interacts with several
databases and third-party web services while processing items out of caches and
queues. The modern application has multiple clients from browser-based desktops
to native applications on mobile. As a result, it can be difficult just to know where to
start if you’re depending on log files for troubleshooting performance issues.

Tomcat

Tomcat
JBoss

JBoss

JBoss

SQL Server

MySQL

Cassandra

THRIFT

THRIFT

JMS

SOAP

SOAP

SOAP

JDBC
ADD NET

SOAP

JMS

HTTP

HTTP

LDAP

Active
Directory

3rd Party
Web Services

3rd Party
Web Services

Tibco BW

3rd Party
Java App

When Logging Isn’t Enough
A Modern Approach to Monitoring Performance in Production

5

Your Business Runs On Apps
Every company is a software company now, and every company is invested in the
performance of their applications. More and more businesses get their revenue
through their website rather than their storefront, and they can’t afford to lose
money if their web applications are slow. And the definition of “slow” changes daily
as your end users become accustomed to faster and faster speeds. Here are a few
recent findings about web performance and revenue:

 –	Microsoft found that Bing searches that were 2 seconds slower resulted in a
	 4.3% drop in revenue per user.
 –	When Mozilla shaved 2.2 seconds off their landing page, Firefox downloads 	
	 increased 15.4%.
 –	Shopzilla saw conversion rates increase by 7-12% as a result of their web 		
	 performance optimization efforts.
 –	Making Barack Obama’s website 60% faster increased donation conversions
	 by 14%.

The reality is that your business is affected by performance issues long before your
service goes down. The longer it takes to find the root cause of those performance
problems, the more money you lose.

How much money are we talking about? One large e-commerce company in the
United States decided to calculate the cost of a recent performance problem caused
by code deadlock. They found that over 2,000 transactions were effected by the
deadlock, and at an average of $74 per transaction, they found they had lost over
$180,000 in business. Not every company is the same, but if your business relies on
an application then you can’t afford to rely on logs. You need to be proactive about
application performance, finding issues before they snowball into outages that cost
you money and customer loyalty.

End User Complains

HOURS

MINUTES

WITH
LOGS

WITH
APM

PROBLEM
STARTS

BUSINESS IMPACT

Identify Isolate RepairOperations
Logs Ticket

Operations
Receive Alert Identify Isolate Repair

Your Culture Has Changed
Recent developments in IT processes and culture have an effect on how
performance is managed, too. Trends like DevOps represent a shift in how
developers and operations collaborate to manage applications, and agile
development methodologies have increased the rate of change in many
applications. These shift creates a need for tools that 1) make it easy for anyone
in the organization to identify performance issues, whether they’re an application
expert or not, and 2) automatically reflect changes in the application environment.
Logging no longer works in this new scenario, because it requires an application
expert to know where to look and what to look for. Application performance
management tools are necessary to truly enable DevOps at an organization.

Conclusion
Logging has never been a great way to resolve performance problems in a
production environment, but recent changes in technology, business and culture
have made it even more unsuitable for production monitoring. In order to manage
application performance effectively you need a tool that makes it easy for anyone
to find and resolve performance bottlenecks no matter where they occur in the
application – in other words, you need an approach to managing performance that’s
designed for the modern world of applications. Logging is simply no longer enough.

AppDynamics, Inc.
www.appdynamics.com

Copyright © 2014 AppDynamics, Inc. All rights reserved. The term
APPDYNAMICS and any logos of AppDynamics are trademarked or
registered trademarks of AppDynamics, Inc.

Try it FREE at
www.appdynamics.com

